In the long term, this accumulation can reach severe damage. This toxic build-up of heavy metals can cause diseases such as Alzheimer’s, Parkinson’s, cancer, and liver failure in the human body.
Responsibility for this issue falls on public institutions and people. To leave a clean world for future generations, what is essential:
• Encouraging people to use public transportation
• Production and use of quality fuel should be improved
• Heavy metal accumulation and accumulation rate of the lands on the side of the highway should be determined by making necessary analyses.
• Pollution mapping of the region should be done with the determined data, and farmers should be directed to studies related to reducing pollution in these regions.
• We should promote the widespread cultivation of “accumulator plants” by road management authorities and farmers along the road.
WHAT CAN WE DO?
Expanding efforts to clean the areas exposed to pollution is necessary. Bioremediation, soil washing, cleaning in place, electrokinetic technology and mechanical separation methods and isolation immobilization technologies, accumulator plants (Thlaspi, Chenopodium, Urtica, Polygonum saccharase, and Alyssum), and some of the bacteria are methods used in heavy metal removal.
The easiest and most accessible method for road management authorities and farmers is to remove pollution with the help of accumulator plants and bacteria. Thaspi, Chenopodium, Urtica, polygonum, and alyssum are accumulator plants that can all contribute to soil remediation. Accumulator plants absorb heavy metals with the help of their roots. By removing these plants from the environment, we will ensure the removal of heavy metals.
Bacteria such as Alcaligenes faecalis, Bacillus pumilus, Pseudomonas aeruginosa, and Brevibacterium iodonium are highly resistant to mercury. They can grow at a concentration of 25 ppm or higher. They have also been observed to remove more than 70% of Cd and 98% of Pb.
Microorganisms can dissolve metals and reduce or oxidize transition metals. Different methods by which microbes restore the environment; oxidizing, binding, immobilizing, volatilizing, and transforming heavy metals. Bioremediation can be accomplished, especially with the designer microbe approach, and by understanding the mechanism that controls the growth and activity of microorganisms in contaminated areas, their metabolic capacities, and their response to environmental changes.
Bioremediation is based on microorganisms’ capacity to absorb pollutants and use them for their growth and metabolic activities. The primary purpose of bioremediation is to provide the most suitable conditions for microbial growth and activity. Different technologies can be used depending on the aeration and saturation degree of the area. Bioremediation is applied in two ways. First, by transferring nutrients to the place where the wastes are spilled, the bacteria already in the soil are activated according to the bacterial composition of the soil. This method is used at low pollutant concentrations. Second, the soil is excavated, and new bacteria capable of degrading pollutants are added. Environmental conditions are controlled or changed to optimize the metabolic activities and growth of microorganisms. In optimizing ecological conditions for bioremediation, factors such as temperature, inorganic nutrients (primarily nitrogen and phosphorus), electron acceptors (oxygen, nitrate, and sulfate), and pH are optimized.
When we look at the studies carried out in Turkey, we see that awareness is slowly building up. Still, steps have yet to be taken to address this situation or reduce the source of pollution. By implementing bioremediation solutions, we can contribute to reducing the accumulation of heavy metals on agricultural lands and protecting human health. Both government institutions and individuals must take responsibility to leave a clean world for future generations.
References:
De J, Ramaiah N and Vardanyan L (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10(4): 471-477
KAHVECİOĞLU Ö, KARTAL, G. GÜVEN, A, TİMUR, S.(2007) Environmental Effects of Metals –I.
(access address: www.metalurji.org.tr/dergi/dergi136/d136_4753.pdf)
Seven, T., Büşra, C. A. N., Darende, B. N., & Sevda, O. C. A. K. (2018). Heavy metal pollution in air and soil. National Journal of Environmental Science Research, 1(2), 91-103.
TUIK 2019, Number of motor vehicles by year, https://data.tuik.gov.tr/Bulten/Index?p=Motorlu-Kara-Tasitlari-Ekim-2019-30639#:~:text=Tablo%2D3-,Y%C4%B1llara,-g%C3%B6re%20motorlu%20kara