Promoting water productivity solutions in a development context

Water productivity in rain fed agriculture and horticulture workshop 10 may 2017 Amsterdam Maarten Onneweer

Context of water productivity in Sub Sahara Africa: Social

- Subsistence farming without farm inputs
- Underappreciation of farm work as women's work
- Digital divide
- Rural/Urban linkages

Roughly 65 percent of sub-Saharan Africa's population relies on <u>subsistence farming</u>. The typical farmer in the region, however, is a woman with no fertilizer, no high-yield seeds, no irrigation, and no medication for her animals. (New York Times)

Context of water productivity in Sub Sahara Africa: Climate

Approaching water productivity from two angels

Rain

 Promoting and popularizing in situ measures

Working on Catchment based Water Resources Management (ex situ)

Promoting and popularizing in-situ measures

Technologies for water productivity

Choices depend on slope, crops, soil, climate, available material and of course the kind of crop

Nº	Technology	Land use	Slope	Soil	Material of construction	Distance b/n bunds	Technologies that need to be incorporated / integrated with	Limitations	Remarks
1	Level soil bunds Could also be called Fanya chini which means "throw down"; "Fanya" means "Throw" and "Chini" means "Down"	Usually cultivated	Maximum 20%	All soils not common on heavy black cotton soils – this is b/c of swelling on wetting and cracking on drying.	Where stone is not available; stone-faced- soil bund	Depends on the vertical interval; on gently slope they are wide; on steep slope they are close each other.	Trenches if moisture and soil conservation is needed; need stabilized with suitable grass / legume for forage – also making it productive; cut and carry of the grazsig: maintenance according to fanya juu principle for quick benching	Compared to stone bunds they take more land; requires regular maintenance; the benching speed is low b/c deposited soil in the upper channel is removed for maintaining and upgrading the bund; too close spacing takes up land	Vertical intervals: flexible and quality oriented approach: . Slope 3-8% VI = 1-1.5 m . Slope 8-15% VI = 1-2 m . Slope 15-20% VI = 1.5-2.5 m (only exceptional cases - reinforced) (Caution: soil bunds > 15% to max 20% only if space reduced and with trench, short bunds - above 15% better apply stone faced or stone bunds).Layout along the contours using line level - discuss spacing with farmers and in case of lateral slopes try to maintain lines as straight as possible by applying reinforcements on depression points (to avoid curving a lot or cutting the plough line. Make bund length max 50-80m (the > the slope the < the length). For vertical interval determination see page 39 Part II of the guideline (a) to (d).
2	Graded soil bund; (the grade can vary from 0.5 to 1% i.e. 5 to 10 cm vertical drop for every 10m terrace length)	Cultivated land	Maximum 20%	Same as above	Where stone is not available	Same as above;	Graded is in high rainfall areas or for soils with poor infiltration; need stabilized with suitable grass / legume for forage – also making it productive; cut and carry of the grass/legume than free grass/legume than free	The gradient is sensitive and difficult to maintain it. When small there is water logging and when large erosion / scouring occurs. Integration with waterways is a must	See page 39 the brown Guideline Part II); By the way terraces or bunds are like contours on the map. If you see the contour on a map in steeper areas they become closer while on genthy slope they become far apart i.e. for a fixed vertical interval.
3	Level Fanya Juu; it means "Throw up"	Cultivated the slope should not be too steep	Maximum 15%	Deep soil	Only by soil need to be stabilized	Same as above	Trenches if moisture and soil conservation is needed; need stabilized with suitable grass / legume for forage – also making it productive; cut and carry of the grass/legume than free grazing;	Not possible on steep slopes; can not be crossed by livestock; more labor b/c throwing the soil up; close spacing takes up land.	Compared to conventional soil bunds mentioned above they take less land; see page 37 (Part II) of the watershed guideline on how to make contour Fanya juu i.e "level"
4	Graded Fanya Juu -	Same as above	Maximum 15%	Deep soil	Only by soil bund need to	Same as above	Biological stabilization; fodder	Same as above	with a maximum gradient of 1% discharges excess runoff generated from

What people say: Testimonies from the field

David Rukyiloru:

"I had sold off the productive portion of the land to pay the tuition fees for my children. The only choice I had was to start cultivating the land on the hill, but the soils were becoming continuously less productive due to erosion. I could barely harvest any crop."

David had already abandoned cultivating uphill, but became inspired again seeing how well his crops are doing. "Now that I have learnt how to restore my degraded land and to protect it from erosion, I plan to open up more land on the hill for cultivation

Rainwater champions - Stories from Ethiopia, Kenya and Uganda. Available from: <u>https://www.researchgate.net/publication/</u> 281559836 Rainwater champions -

Intervention Crop farmers % of farmers Increase in

		(n=27)	(n=27)	yields (%)
Fanya chini	Banana	10	37	59
	Coffee	13	48	56
Stone Bunds	Beans	I	4	60
Grass strips	Coffee	2	7	41
	Beans	I	4	0

Some statistics

Sources:

Kisekka et al. (in press) Impact and constraints to adoption of in-situ rainwater harvesting: Experience from the Rwambu, Western Uganda. Springer

Vohland, K., & Barry, B. (2009). A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agriculture, *Ecosystems & Environment*, 131(3), 119-127

. Mekdaschi, R., & Liniger, H. (2013). Water harvesting: Guidelines to good practice. Centre for Development and Environment.

Production benefits Yield increase with MacroWH

Сгор	MacroWH	Country	Yield without MacroWH ¹ (t/ha)	Yield with MacroWH ¹ (t/ha)	Yield gain (%)
Maize (grain yield) ¹	Earth dam	Kenya	1.38	1.80	30
Sorghum ²	Contour bunds and trenches	India	1.75	2.40	137
Vegetables ²	Contour bunds and trenches	India	5.00	7.00	140
Cotton ²	Contour bunds and trenches	India	0.70	1.13	160

¹ For both treatments 30/80 kg N/ha fertilizer was applied. Without fertilizers, irrigation from the earth dam did not significantly increase crop yield (Barron and Okwach, 2005; WOCAT, 2012); ² (WOTR, not dated).

Challenges/opportunities

Labour availability

Maintenance

Incentives/motivation

And? Or what to do?

Water productivity in Catchment based Water Resources Management

In situ as part of a landscape approach: Rwambu Uganda

Uphill issues

Long walking distance to watersource Few opportunities for agricultural expansion without possible soil erosion

Slope issues

Drop or of groundwater table, loss of soil moisture Relativerly long walking distacne to watersources

Village issues

Existing watersources such as boreholes dried due to dropping watertable. People suffer from waterborne diseases such as cholera/typhoid

Downhill issues

Poluted watersources due to latrine infiltration or surface runoff off into open watersources

Wetland issues

Encroachment into the wetland, drainage of parts of the wetland

Catchment level planning for water productivity: Flores Magepanda

Problems:

- I. Upstream burning
- 2. Riverbank erosion
- 3. No regulation between dams
- 4. Over abstraction of ground water

Uphill burning and deforestation

Riverbank erosion

No water governance

Over abstraction of water

Management through zoning

Water does not follow administrative/ethnic or country boundaries

Opportunities: Catchment based water resources management Higher water productivity in the catchment 3 rice harvests instead of 1,5

Thank you

