Water Productivity: from monitoring to improvement

FutureWater solutions and experiences

Gijs Simons

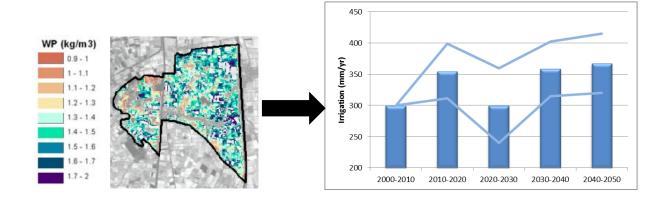
2 March 2017

MetaMeta, Wageningen

FutureWater

- "Research and consulting on water resource management"
- Topics: water, food, irrigation, climate change, droughts, simulation models, remote sensing
- Outputs: technical reports, policy reports, scientific publications, training, datasets, models, operational services
- Partners/Clients: World Bank, Asian Development Bank, Governments,
 River Basin Organizations, Research Entities
- Geographical focus: Europe, Asia, Africa
- Offices: Wageningen (NL), Cartagena (ES): 13 staff

Water productivity in FutureWater activities

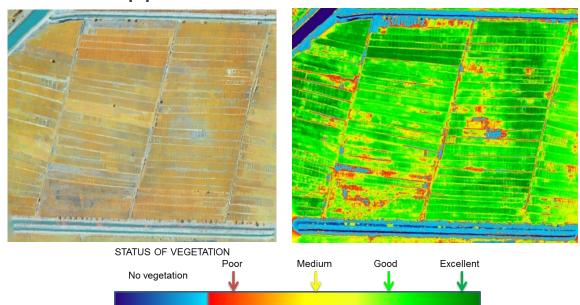

Field-scale monitoring and advice

e.g. ThirdEye: Flying Sensor Support to Farmers' Decision Making, Mozambique

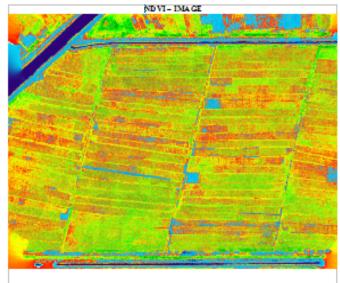
> Prediction and improvement

Using simulation models to go from monitoring to interventions for WP improvement

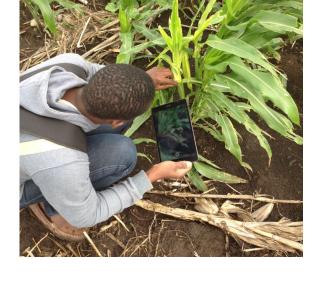
ThirdEye



- > Year 3 of the Securing Water For Food program
- Training of flying sensor operators for decision support to Mozambican farmers
- Currently over 20,000 beneficiaries, 14 trained operators, ~10,000 USD product sales to large-scale farms
- 2017: focus on enhanced outreach, business development, establishment of a central support unit



ThirdEye


DATE	20151012
MISSION NUMBER	19W
AGRARIAN HOUSE	
BLOCK, SUBBLOCK, OR INTATION (N.E.S.W)	DSA-9W
OPERATOR + TELEPHONE	Nord Inc.J. Fija mo 605450550

CONDIÇ DE S	POBRE	MODERADO	BOM	EXCELENTE
10-20 <u>dies depois da</u> sementeira/ <u>transol.</u>	Semear de novo	Verificar o campo	Nenhuma	Nenhuma
> 5 <u>das sem rega</u>	Perda da cultura	Regar	<u>Nenhuma</u>	<u>Nenhuma</u>
> 10 <u>dlas sem rega</u>	Perda da cultura	Regar	Regar	Nenhuma
< 5 <u>das sem rega</u>	Perda da cultura	Aubar	Adubar	Nenhuma

Crop status 10 days
earlier than the
human eye, timely
warnings for the right
cultivation practices.

Accurate and pinpoint identification of field weed/pests/weed infestation areas.

Increased agriculture output, decreased input use.

ThirdEye: observed results

Impact on crop yields and irrigation applications (farmer questionnaires and RBL statistics)

		Third	dEye area	Control area		
Location	Main crop	Yield (2015/2016	Irrigation (2015/2016	Yield (2015/2016	Irrigation (2015/2016	
		vs 2014/2015)	vs 2014/2015)	vs 2014/2015)	vs 2014/2015)	
Xai-Xai	Rice	+69%	+19%	+20%	+36%	
Chókwè	Corn	+17%	-41%	-18%	-37%	

0.65

0.6

0.55

0.5

0.5

0.5

1-11-2015 1-12-2016 1-2-2016 1-3-2016 1-4-2016 1-5-2016

ThirdEye area — — Control area — — ThirdEye Average — — Control area Average


Remote Sensing NDVI data

- Crop status maps supported decision to enhance water distribution by improving tertiary channels (Xai-Xai)
- Tool to support decision on altering water tables by controlling the gates in secondary channels
- Discussion: water productivity vs. SWFF target of "water saving"

From monitoring WP to improving WP

Tools to support decision making

Strategic decision support Operational decision support

SDG 6.4: **by 2030**, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity, and substantially reduce the number of people suffering from water scarcity

From monitoring WP to improving WP

Crop water productivity = Yield Evapotranspiration

Agro-hydrological models

- SWAP
- AquaCrop
- Etc.

Spatial hydrological models

- SWAT
- SPHY
- Etc.

Scenario runs:

- Climate change
 - Changes in rainfall
 - Changes in temperature
 - Changes in reference ET
 - CO₂ fertilization effect

- Human interventions, e.g.
 - Enhanced seed varieties
 - Changing cropping patterns
 - Adjusted irrigation scheduling
 - Increasing fertilizer application
 - Mulching

Example AquaCrop application: Albania

Future irrigation water requirements towards 2040 (%/10yr), assuming current yields

			Coastal	Northern	Southern	
Scenario	Crop	diate	Lowlands	Mountains	Highlands	
	Alfalfa irrigated	-3%	-2%	-6%	-6%	
MEDIAN	Maize	11%	7%	6%	9%	
	Tomatoes	25%	14%	4%	24%	
	Watermelons		9%			

Future crop yield changes towards 2040 (%/10yr) assuming current irrigation applications

_	Interme-	Coastal	Northern	Southern	
Crop	diate	Lowlands	Mountains	Highlands	
Alfalfa irrigated	2%	2%	4%	8%	
Alfalfa non irrigated	-1%	-1%	4%	0%	
Grapes	-8%	-10%	-6%	-10%	
Grassland	-2%	1%	3%	1%	
Maize	-1%	-2%	-4%	7%	
Olives	-1%	-8%	-5%	-5%	
Tomatoes	0%	-2%	-3%	-1%	
Watermelons		-1%			
Wheat	4%	3%	11%	8%	

Example Albania: adaptation assessment

> Impact on olive crop yields (ton/ha) for various management interventions

Scenario		Intermediate		Coastal Lowlands		Northern Mountains		Southern Highlands	
Current		1.3		1.1		1.0		1.2	
2040's	Impact	1.2	(-3%)	0.9	(-21%)	8.0	(-19%)	1.1	(-9%)
	Increased Fertilizer Use	1.6	(+28%)	1.1	(+5%)	1.1	(+9%)	1.3	(+12%)
	Enhanced Varieties	1.4	(+13%)	1.1	(-1%)	1.0	(+0%)	1.3	(+10%)

Concluding remarks

- Satellite-derived WP database is a huge information resource on past and current situation
- > For implementing interventions to improve WP, simulation models are needed to examine impact of different futures (farm management, water supply, climate change)
- > Models can be effective on different spatial (country to field) and temporal (daily forecast to climate change) scales
- > Many additional uses related to WP: operational decision support, quantifying potential yield and yield gaps, partitioning agricultural water balance (return flows, gw recharge, soil evaporation)
- Model applications will be discussed in detail during FutureWater's contribution to the WP Masterclasses

Thank you for your attention!

g.simons@futurewater.nl

