Modeling crop water productivity

A quick intro & quiz

Johannes Hunink (j.hunink@futurewater.es)

29-Mar-2017, Wageningen, Netherlands

Research and consultancy for a sustainable future of our water resources

AquaCrop

AquaCrop

- Developed by scientists attached to FAO
- Balance between simplicity and accuracy
- Relatively small number of explicit parameters
- Many herbaceous annual crops are included
- User interface for practicioners

Training program experts Armenia 2016

- > National Communications on Climate Change UNFCC
- > 15 specialists from different ministries

Underlying concepts

AquaCrop Conceptual Framework

AquaCrop Conceptual Framework | Crop

Canopy cover development

 $CC = \frac{soil \ surface \ covered \ by \ the \ green \ canopy}{covered \ by \ the \ green \ canopy}$

unit ground surface area

Canopy cover development

THE CROP WATER PRODUCTIVITY QUIZ

The baseline

- > Tunis
- > Meditterranean climate, 400 mm rainfall
- > Wheat
- > One single average year (1989)

Display of climate characteristics		_ 🗆
Description Rainfall ETo Temperature	e CO2	
Reference evapotransp File Description Tunis.ETo Tunis (Tunisia)	oiration (ETo)	cember 2002
Total yearly ETo 24 years		
mm/year 1500 1125 750 375		
0 1979	year	2002

The quiz

- > Simulate wheat growth, yield and water productivity for one single season.
- > Assess a few scenarios, but before we run the scenarios in the model: you as experts will give an estimate of expected change
- > Current climate vs future climate

Scenarios – current climate

> Scen0: Baseline, wheat, Tunis:

- Near optimal soil fertility
- No irrigation
- Soil fully wetted start of season
- > Scen1: optimal fertilizer applications
- > Scen2: optimal irrigation applications
- > Scen3: optimal fertilizer and irrigation

Scenarios – future climate

- > Scen4: 2090s:
 - + 2ºC
 - - 15% rainfall
 - Agricultural practices: as in current climate (fertility, irrigation, etc)
- > Scen5: optimal fertilizer applications
- > Scen6: optimal irrigation applications
- > Scen7: optimal fertilizer and irrigation applications

Other possible adaptation scenarios

- > Enhanced crop varieties
- > Changes in timing of sowing, harvesting, etc
- > Terracing to reduce runoff
- > Mulching to reduce evaporation
- > Deficit irrigation practices
- > Etc..

But for a robust future impact assessment:

- > Multiple years
- > Multiple combination of soils, degradation levels
- > Multiple crops
- > Different regions
- > Different practices
- > And of course multiple climate change projections...

Thank You

Research and consultancy for a sustainable future of our water resources